RSA SENSORES, CONTROLES, VALVULAS, ATUADORES, EQUIPAMENTOS, HVAC E AUTOMAÇÃO - Avenida Ragueb Chohfi, 960 - Torre 3, Sala 73 - Jardim Três Marias, São Paulo-SP, Cep: 08375-000 Telefone Sac: 55 11 2031 6658 – WHATSAPP 11 979936574 Email: contato@rsa-sensors.com.br

In ventilation and air air conditioning plants for control on the water side and automatic hydraulic balancing of terminal units, such as fan coils, air handling units, and in heat exchangers for heating orcooling.

• In heating zones like self-contained heating systems, apartments, ndividual rooms, etc.

Overviews:

- Combines an externally presettable adjustable valve, a differential pressure control valve and a full authority modulating control valve.
- DN15~200
 - Pipe connections RSA12... (DN15~DN50): Internal thread BSP (ISO7/1) PN25 RSA62... (DN65~DN200):

Flanged (ISO7005-2) PN16 PN25

Body materials:

RSAT12... (DN15~DN32): hot-pressed brass

(DN40~DN50): stainless steel

RSAT62...

(DN65~DN200): nodular cast iron

- The maximum flow can be preset arbitrarily according to the actual flow demand, making the control more precise and adjustment more convenient
- The presetting function has no impact on the stroke, regulation characteristic remains unchanged regardless of preset flow
- The flow control is only related to the electric control valve opening and is not affected by the fluctuation of the system pressure difference
- Optional with pressure test plugs (P/T plugs) (It must be selected before delivery)
- Can be quipped with linear electromotor

actuators, such as: 3 point or DC0...10V or DC4...20mA

RSA SENSORES, CONTROLES, VALVULAS, ATUADORES, EQUIPAMENTOS, HVAC E AUTOMAÇÃO - Avenida Ragueb Chohfi, 960 - Torre 3, Sala 73 - Jardim Três Marias, São Paulo-SP, Cep: 08375-000 Telefone Sac: 55 11 2031 6658 – WHATSAPP 11 979936574 Email: <u>contato@rsa-sensors.com.br</u> Site: <u>http://www.rsa-sensors.com.br</u>

Application:

RSA.. Combi Valves pressure independent combi valve (PICV) is used in heating and cooling systems in applications with Air Handling Units, Heat Exhangers or Mixing Circuits. It combines a differential pressure control valve and a full authority modulating control valve.

Provides modulating control with full authority regardless of any fluctuations in the differential pressure of the system. RSA.. Combi Valves makes it simple to achieve 100% control of the water flow in the building, while creating high comfort and energy savings at the same time. An additional benefit is that no balancing is required if further stages are added to the system, or if the dimensioned capacity is changed.

The constant differential pressure across the modulating control component guarantees 100% authority. Energy saving due to optimal control, lower flow and pump pressure. Maximized ΔT due to faster response and increased system stability.

	DN	H ₁₀₀	Q _{min}	Q _{max}	Commo	ations	PN	P/T	$\Delta \mathbf{P}_{\min} \mathbf{\sim} \Delta \mathbf{P}_{\max}$	Medium
Product number	DN	mm	(m³/h)	(m³/h)	Conne	connections		plugs	(KPa)	temperature
RSA12.15.25	DN15	115 2.5 0.15 0.6 ¹ / ₂ in BSP PN25 no 25400		25400						
RSA12.20.25	DN20	2.5	0.25	1.1	³ / ₄ in	BSP	PN25	no	30400	
RSA12.25.25	DN25	5	0.3	1.5	1 in	BSP	PN25	no	30400	
RSA12.32.25	DN32	6	0.6	3.1	1 ¹ / ₄ in	BSP	PN25	no	30400	
RSA12.40.25	DN40	10	1.5	7.5	$1^{1}/_{2}$ in	BSP	PN25	no	30400	
RSA12.50.25	DN50	15	2	10	2 in	BSP	PN25	no	30400	
RSA62.65.16	DN65	18	4	24	Flanged	-	PN16	no	30400	
RSA62.80.16	DN80	18	6.4	34	Flanged	-	PN16	no	30400	
RSA62.100.16	DN100 25 DN125 30	25	8.4	48	Flanged	langed -	PN16	no	30400	
RSA62.125.16		30	19	75	Flanged	-	PN16	no	30400	
RSA62.150.16	DN150	40	30	120	Flanged	-	PN16	no	30400	
RSA62.200.16	DN200	25	45	175	Flanged	-	PN16	no	30400	1110°C
RSA12.15.25Q	DN15	2.5	0.15	0.6	¹ / ₂ in	BSP	PN25	yes	25400	
RSA12.20.25Q	DN20	2.5	0.25	1.1	³ / ₄ in	BSP	PN25	yes	30400	
RSA12.25.25Q	DN25	5	0.3	1.5	1 in	BSP	PN25	yes	30400	
RSA12.32.25Q	DN32	6	0.6	3.1	1 ¹ / ₄ in	BSP	PN25	yes	30400	
RSA12.40.25Q	DN40	10	1.5	7.5	$1^{1}/_{2}$ in	BSP	PN25	yes	30400	
RSA12.50.25Q	DN50	15	2	10	2 in	BSP	PN25	yes	30400	
RSA62.65.16Q	DN65	18	4	24	Flanged	-	PN16	yes	30400	
RSA62.80.16Q	DN80	18	6.4	34	Flanged	-	PN16	yes	30400	
RSA62.100.16Q	DN100	25	8.4	48	Flanged	-	PN16	yes	30400	
RSA62.125.16Q	DN125	30	19	75	Flanged	-	PN16	yes	30400	
RSA62.150.16Q	DN150	40	30	120	Flanged	-	PN16	yes	30400	
RSA62.200.16Q	DN200	25	45	175	Flanged	-	PN16	yes	30400	

Types and Technical data:

DN = nominal size

H₁₀₀ = nominal stroke

Q_{min} = smallest volumetric flow through valve, so that the difference pressure regulator works reliably. When the volumetric flow decreases below Q_{min}, the RSAT operates with lower accuracy, so much asat much lower flow it enters into a static balancing zone.

 \mathbf{Q}_{max} = volumetric flow through fully open valve(H₁₀₀)

Δp_{min} = "START UP Δp", minimum differential pressure required across the valve's control path, so that the difference pressure regulator works reliably. When the pressure loss decreases below Δp_{min}, the RSAT operates with lower accuracy and at much lower differential pressure it enters into a static balancing zone.
Δp_{max} = maximum permissible differential pressure across the valve's control path, so that the difference pressure

regulator works reliably. Within this pressure loss range the valve will maintain a constant flow.

P/T-plugs = pressure test plugs, Self-sealing measuring points, for measuring and monitoring the differential pressure across the valve during commissioning, and measuring points for flow verification.

Product		H _{res} ΔP_{max}		Matc the actuator $^{1)}$ and ΔP_{s}			
number	DN	mm	[KPa]	90N	200N ΔPs[KPa]		
number			• •	ΔP_s [KPa]			
RSA12.15.25	DN15	2.5	4 0	400	400		
RSA12.20.25	DN20	2.5	4 0	400	400		
RSA12.25.25	DN25	5	4 0	400	400		
RSA12.32.25	SA12.32.25 DN32		4 0	-	310		

 $\Delta \mathbf{P}_{s}$ = maximum permissible differential pressure at which the motorized Combi valve will close securely against the

pressure (close off pressure)

1) For detailed parameters of the actuator, see the relevant actuator data.

				M tch the actuator ¹⁾ and ΔP_s									
Product		H ₁₀₀	۸	RSAJ3	RSAJ3	RSA 4	RSA	RSAJ6					
number		mm	□ max [KPa]	10.014	1500N	1800N	3000N	6500N					
			[la a]	ΔP_s [KPa]	ΔP _s [KPa]	ΔP _s KPa]	ΔP _s [Pa]	ΔP _s [KPa]					
RSA12.40.25	DN40	10	400	4 0	-	-	-	-					
RSA12.50.25	DN50	15	400	4 0	-	-	-	-					
RSA62.65.16	DN65	18	400	-	400	-	-	-					
RSA62.80.16	DN80	18	400	-	310	370	400	-					
RSA62.100.16	DN100	25	400	-	-	250	400	-					
RSA62.125.16	DN125	30	400	-	-	-	400	-					
RSA62.150.16	DN150	40	400	-	-	-	400	-					
RSA62.200.16	DN200	25	400	-	-	-	240	400					

Functional principle:

RSAT.. Combi Valves combine three functions:

- an presetting adjusting mechanism ①, with a dial for a presettable maximum volumetric flow
- a differential pressure controller ②, ensuring a constant differential pressure across control valves regardless of changes in pump speed or valve closures elsewhere in the system
- a modulating control valve ③, for controlling the volumetric flow across the valve's path, it can be used to equipped actuators.

The mechanical series-connected differential pressure controller keeps the differential pressure (p1 - p2) constant across the control valve and thus the s t volumetric flow too. T e desired m aximum volumetric flow can be preset with the adjusting mechanism. The volumetric flow through the control valve opening to control. The controller (not shown) and the actuator regulate the volumetric flow and conse uently the desired temperature in buildings,

The main components of the valve are:

- Differential pressure controller
- ② Differential pressure controller
- 3 Modulating control valve
- ④ Pressure test plugs (P/T plugs)
- ⑤ Actuator

Maximum flow preset

rooms or zones.

Flow data sheet (Preset mark Corresponding Flow m³/h)

_	Scale Value									
Гуре	1	1.5	2	4	6	8	10			
RSA12.15.25	•	0.18	0.22	0.31	0.39	0.52	0.60			
RSA12.20.25	•	0.30	0.34	0.50	0.66	0.83	1.00			
RSA12.25.25	•	0.42	0.51	0.72	0.93	1.15	1.40			
RSA12.32.25	•	1.08	1.17	1.83	2.53	3.22	3.60			
RSA12.40.25	-	1.20	1.27	3.15	4.71	6.05	7.50			
RSA12.50.25	-	2.87	3.17	5.13	6.60	8.20	10			
RSA62.65.16/25	•	5.90	6.64	11.40	17.22	20.38	24			
RSA62.80.16/25	•	8.63	9.45	14.54	19.56	22.94	32			
RSA62.100.16/25	-	13.00	14.5	24.00	31.70	40.30	48			
RSA62.125.16/25		20.3	22.5	37.5	49.50	63.00	75			
RSA62.150.16/25	•	32.5	36	61	80	101	120			

Structure

If the differential pressure between p1 and p3 exceeds Δp_{min} value, means that the differ ntial pressure controller starts to work, so as to achieve the function f flow restrictions. In this zone, the flow is con tant. When the pressure loss decreases below Δp_{min} the SMT.. op rates with lower accuracy and at much lower ifferential pressure it enters into a static balancing zone.

Flow Rate versus Differential Pressure

START UP AP

ΔPmax

400KPa

Optimization of the pump selection:

By measuring the differential pressure between p1 and p3 can be used to the Δp_{min} verification, enough and can test flow, at the same time can also be used to optimize the water pump pressure. Make pump pressure to reduce gradually, until in the most unfavorable branch of differential pressure (p1 and p3) is not greater than Δp_{min} value, and when the pump lift and measuring the differential pressure of the ratio between the relationship will not exist, is the best point of pump lift.

Sizing:

Basis of design

- 5. Determine heat demand Rv [KW];
- 6. Determine temperature spread ΔT [°C];
- 7. Calculate volumetric flow:

$$Q = \frac{Rv[KW]}{1.16 \bullet \Delta T[^{\circ}C]} [m^{3/h}];$$

8. Select suitable Combi valve.

Example

- 5. Heat demand Rv=200 KW;
- 6. Temperature spread $\Delta T=6^{\circ}C$;
- 7. Volumetric flow

Q=
$$\frac{200}{1.16 \bullet 6}$$
 =28.74 m³/h;

 Ideally, Combi valves should be selected such that they operate at about 80% of their maximum flow, enabling them to deliver spare capacity, if required. Selection: RSA62.80.16

Working pressure and medium temperature staged as per ISO 7005

Installation

1

Preferably mount the valves at the return, as the temperature is lower there and the strain on the stem sealing gland is lower.

Mount a dirt filter or dirt trap before the valve to ensure proper functioning, and a long service life of the valve. Remove dirt, welding beads, etc. from the valves and pipes.

Do not insulate the actuator bracket, as air circulation must be ensured!.

The valve should not be installed in places prone to knock, and impact and vibration, the ambient temperature is 2° to 50° . In addition, it should not be installed in an environment with steam, water jet or water dripping.

Mounting positions

Medium flow direction

Installation must follow the medium flow direction on the valve body. \rightarrow

Commissioning

1

The valve may be put into operation only if actuator and valve are correctly

assembled.

- The combi valves have to be open when flushing or pressure testing the system. Strong pressure impacts can damage closed combi valves.
- Differential pressure Δp_{max} across the valve's control path is not allowed to exceed 400 kPa. Strong pressure impacts can damage closed combi valves.
- The valves must be commissioned with the actuator correctly fitted.

Ensure that actuator stem and valve stem are rigidly connected in all positions.

Function check

valve	valve opening
Valve stem retracts	Closes
Valve stem extends	Opens

Maintenance

When performing service work on the valve or actuator:

- Switch off the pump and disconnect power supply.
- Close the shut-off valves in the piping network.
- Fully reduce pressure in the piping network and allow the pipes to cool down completely. Remove the electrical connections only if necessary.

First, ensure that the actuator has been removed correctly, and then the valve for the following maintenance, and the correct installation of the actuator after the correct maintenance and commissioning of the whole machine

Sealing gland

Disposal

X

Warranty

Without wear on stem surface, stem seals can be replaced without removing the body. If the stem is found damaged, the whole valve must be replaced.

Due to the different types of material used, the valve must be disassembled prior to disposal. Special handling of certain valve components may be required by law or may besensible from an ecological point of view. Local and currently valid legislation must be observed.

The technical parameters of the valve only apply to the actuators listed in this document. If actuators made by other manufacturers are used, all warranties will not be valid.

Technical data

Functional data	PN class	PN 16, PN25 as per ISO 7268					
	Permissible operating pressure	as per ISO 7005, See previous page "Working					
		pressure and medium temperature staged"					
	Leakage rate	Class IV					
		(00.01% of volumetric flow Q _{max})					
		as per DIN EN 1349					
	Volumetric flow deviation	< ±10% within differential pressure range					
		(Different flow, accuracy will be different)					
	Permissible media	Low temperature hot water,					
		medium temperature hot water,					
		chilled water, water with antifreeze					
		Recommendation: Water treatment					
	Operating direction	Valve stem retracts will closed (push to close)					
	Medium temperature	1110°C					
Materials	Valve body	DN15DN32: Hot-pressed brass					
		DN40DN50: Stainless steel					
		DN65DN200: Nodular cast iron					
	Stem,	Stainless steel					
	Trim	Brass, Stainless steel, PPS					
	Seals	EPDM (O-ring)					
	Spring	Stainless steel					
Dimensions / weight	Refer to "Dimensions"						
	Pipe connections	DN15DN50:					
		Internal thread BSP (ISO7/1) PN25					
		DN65DN200:					
		Flanged (ISO7005-2) PN16, PN25					
	Pressure test plugs (P/T-plugs)	G 1/4'					

Important note:

All data are temporary, manufacturers have the right to change please pay attention to the latest catalogues, company website and other information !

Dimensions:

Dimensions in mm, weight in kg

DN15-DN32

			woight					
	L	W	W2	H6	H7	H8	weight	
15	75	45	57	52	101	199	0.65	
20	85	48	59	57	105	203	0.72	
25	90	48	59	62	114	212	0.98	
32	115	59	65	75	138	236	1.35	

W2

//////

DN40-DN50

DN		PN25											
DIN	L	W W2		H5	н	h	weight						
40	140	89	121	60	121	75	2.7						
50	140	89	121	65	126	75	3.0						

DN65-DN80 Equipped RSAJ3D.. actuator

DN65-DN200 Equipped RSAJ4.. actuator

DN65-DN200

		PN16			PN25										
DN	L	D	к	Bolts number and size	D	к	Bolts number and size	н	H5	h	VAJ3A 1000N	VAJ3D 1500N	VAJ4 1800N	VAJ4 3000N	weight
65	290	185	145	4-M16	185	145	8-M16	248	90	66	-	578	708	-	25
80	310	200	160	8-M16	200	160	8-M16	252	101	66	-	582	712	-	32
100	350	220	180	8-M16	235	190	8-M20	296	111	66	-	-	-	756	43
125	400	250	210	8-M16	270	220	8-M24	339	127	66	-	-	-	799	65
150	480	285	240	8-M20	300	250	8-M24	370	141	66	-	-	-	830	83
200	495	340	295	12- M20	360	310	12- M24	448	145	66	-	-	-	840	115

DN = Nominal size

- H5 = Dimension from the pipe center to install the actuator (upper edge)
- H' = Total actuator height plus minimum distance to the wall or the ceiling for mounting, connection, operation, maintenance etc.

RSA SENSORES, CONTROLES, VALVULAS, ATUADORES, EQUIPAMENTOS, HVAC E AUTOMAÇÃO - Avenida Ragueb Chohfi, 960 - Torre 3, Sala 73 - Jardim Três Marias, São Paulo-SP, Cep: 08375-000 Telefone Sac: 55 11 2031 6658 – WHATSAPP 11 979936574 Email: <u>contato@rsa-sensors.com.br</u> Site: <u>http://www.rsa-sensors.com.br</u>