DISTRIBUIDOR IMI TA - RSA - A mais completa em soluções para HVAC e Automação Avenida Ragueb Chohfi, 960 - Torre 3, Sala 73 - Jardim Três Marias, São Paulo-SP, Cep: 08375-000 Telefone Sac: 55 11 2031 6658 - Email: contato@rsistemasdeautomacao.com.br Site: $\underline{\text{http://www.rsistemas-automacao.com.br/empres/empres.aspx}}$

STAD

Válvulas de balanceamento DN 15-50

Engineering GREAT Solutions

STAD

A válvula de balanceamento STAD permite uma performance hidráulica precisa numa extensa gama de aplicações. Ideal para utilização no em sistemas de aquecimento, resfriamento e sistemas prediais.

Principais características

> Volante

Equipado com leitura digital, o volante garante um balanceamento preciso e direto. Função de bloqueio para uma manutenção mais fácil.

Pontos de medição auto-vedantes Para um balanceamento simples e preciso.

> AMETAL®

Liga resistente à dezincificação, que garante uma maior vida útil a válvula e diminui o risco de ocorrerem vazamentos.

Características Técnicas

Aplicação:

Sistemas de água quente e fria

Funções:

Balanceamento

Pré-ajuste Medição

Bloqueio

Dreno (opcional)

Dimensões:

DN 10-50

Classe de Pressão:

PN 20

Temperatura:

Máx. temperatura de trabalho: 120°C Para temperaturas maiores, máx. 150°C, por favor entre em contato com o escritório de vendas mais próximo. **Atenção!** DN 25-50 com conexão lisa, máx. temperatura de trabalho é 120°C. Mín. temperatura de trabalho: -20°C

Materiais:

As válvulas são feitas em AMETAL® Vedação do asento: Plano de EPDM Vedação da haste: O'ring de EPDM Volante: Poliamida e TPE

Conexão Lisa: Adaptador: AMETAL®

Vedação (DN 25-50): O'ring - EPDM

AMETAL® é uma liga resistente à abrasão e à corrosão, desenvolvida pela IMI Hydronic Engineering.

Identificação:

Corpo: TA, PN 20/150, DN (em mm e

polegadas).

Volante: Modelo da válvula e DN

Pontos de medição

Os pontos de medição são auto-estanques. Remova a tampa e insira a agulha de medição.

Dreno

As válvulas possuem conexões para mangueiras de dreno com rosca de G1/2 ou G3/4. As válvulas sem o dreno possuem uma luva que pode ser removida e substituída por um kit de drenagem, que é disponibilizado como acessório.

Dimensionamento

Quando o Δp e a vazão de projeto são conhecidos, utilize a fórmula ou os ábacos para calcular o valor-Kv.

$$Kv = 0.01 \frac{q}{\sqrt{\Delta p}}$$
 q l/h, Δp kPa

$$Kv = 36 \frac{q}{\sqrt{\Delta p}}$$
 $q l/s, \Delta p kPa$

Valores Kv

Voltas	DN 10/09	DN 15/14	DN 20	DN 25	DN 32	DN 40	DN 50	
0.5	-	0.127	0.511	0.60	1.14	1.75	2.56	
1	0.090	0.212	0.757	1.03	1.90	3.30	4.20	
1.5	0.137	0.314	1.19	2.10	3.10	4.60	7.20	
2	0.260	0.571	1.90	3.62	4.66	6.10	11.7	
2.5	0.480	0.877	2.80	5.30	7.10	8.80	16.2	
3	0.826	1.38	3.87	6.90	9.50	12.6	21.5	
3.5	1.26	1.98	4.75	8.00	11.8	16.0	26.5	
4	1.47	2.52	5.70	8.70	14.2	19.2	33.0	

Precisão nas medidas

A posição zero está calibrada e não deve ser modificada.

Desvio da vazão para diferentes ajustes

A curva (fig. 4) é válida para válvulas montadas de acordo com as recomendações (fig. 5). Deve ser evitada a montagem de bombas, cotovelos e outras singularidades muito próximas a entrada da válvula.

A válvula pode ser montada no sentido do fluxo oposto ao indicado no corpo da válvula. Neste caso pode produzir um erro adicional na medida (máx. 5%).

Fig. 4

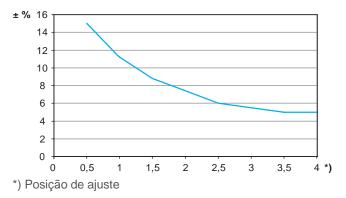
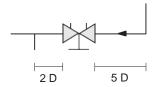
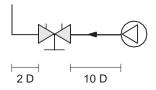




Fig. 5

Fatores de correção

Os cálculos de vazão são válidos para água (+20 °C). Para outros líquidos com viscosidade aproximada à da água (≤ 20 cSt = 3 °E = 100 SU), é necessário apenas compensar para a densidade específica. No entanto, a baixas temperaturas, a viscosidade aumenta e pode ocorrer vazão laminar nas

válvulas. Isto provoca um desvio de vazão que aumenta com válvulas pequenas, ajustes baixos e pressões diferenciais também baixas. Correções para este desvio podem ser feitas com o software HySelect ou diretamente com instrumentos de balanceamento da IMI Hydronic Engineering.

Pré ajuste

Suponhamos que após os cálculos de vazão e perda de carga, determinamos que a válvula deve ser regulada para a posição de 2,3 voltas, de acordo com os ábacos. O procedimento deve ser o seguinte:

- 1. Feche a válvula totalmente (fig.1)
- Abra a válvula até a posição de regulagem, no caso 2,3 voltas (fig. 2)
- Utilizando uma chave allen de 3mm, gire a haste interna no sentido horário até ela travar.
- 4. A válvula está ajustada.

Para verificar o ajuste: Feche a válvula totalmente, o indicador deve mostrar 0.0. Abra até que o volante trave. O indicador deve mostrar então a posição de ajuste que no caso é 2.3 (fig.2)

Os ábacos mostrando as posições de regulagem relacionando o tamanho da válvula, as vazões e perdas de carga, estão disponíveis para auxiliar no dimensionamento da válvula e determinação da posição de pré-ajuste (perda de carga).

A posição de 4.0 voltas corresponde a abertura máxima da válvula (fig.3). Aberturas maiores não irão provocar aumento nas vazões.

Fig. 1 Válvula totalmente fechada

Fig.2
A válvula está ajustada para 2.3

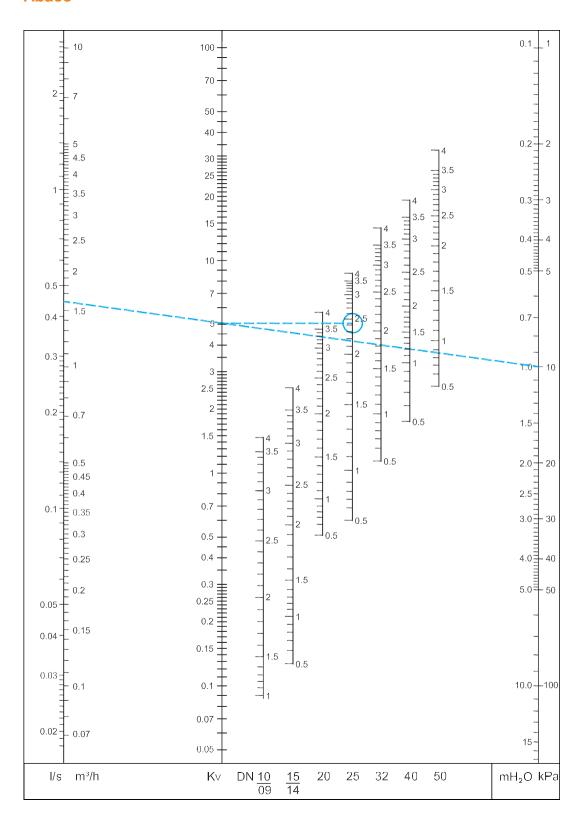
Fig.3 Válvula totalmente aberta

Exemplo - Ábaco

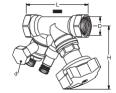
Calcular a posição de ajuste de uma válvula DN 25 para uma vazão de 1,6 m³/h e uma perda de carga de 10 kPa.

Solução:

Traçar no ábaco uma linha que una 1,6 m³/h com 10 kPa. Isto resulta em Kv de 5. Traçar uma horizontal do Kv até a escala correspondente a DN 25; obtendo-se a posição 2,42 voltas.


Nota:

Se a vazão cair fora da escala do cálculo, deve-se proceder como segue:

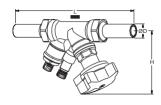

se para 10 kPa e um Kv de 5 obteve-se uma vazão de 1,6 m³/h e para 10 kPa um Kv de 50 a vazão é 16 m³/h, teremos uma perda de carga de 0,1 ou 10 vezes a vazão e o Kv.

Ábaco

Itens

Rosca Fêmea

Rosca segundo ISO 228. Comprimento de rosca segundo ISO 7/1. Com dispositivo de dreno


DN	D	L	Н	Kvs	Kg	Código Item
d = G1/2	2					
10/09*	G3/8	83	100	1,47	0,65	52 151-209
15/14*	G1/2	90	100	2,52	0,68	52 151-214
20*	G3/4	97	100	5,70	0,77	52 151-220
25	G1	110	105	8,70	0,93	52 151-225
32	G1 1/4	124	110	14,2	1,3	52 151-232
40	G1 1/2	130	120	19,2	1,6	52 151-240
50	G2	155	120	33,0	2,4	52 151-250
d = G3/4	1					
10/09*	G3/8	83	100	1,47	0,65	52 151-609
15/14*	G1/2	90	100	2,52	0,68	52 151-614
20*	G3/4	97	100	5,70	0,77	52 151-620
25	G1	110	105	8,70	0,93	52 151-625
32	G1 1/4	124	110	14,2	1,3	52 151-632
40	G1 1/2	130	120	19,2	1,6	52 151-640
50	G2	155	120	33,0	2,4	52 151-650

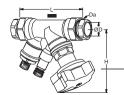
Rosca Fêmea

Rosca segundo ISO 228. Comprimento de rosca segundo ISO 7/1. Sem dispositivo de dreno (pode ser instalado com a instalação pressurizada)

DN	D	L	Н	Kvs	Kg	Código Item
10/09*	G3/8	83	100	1,47	0,58	52 151-009
15/14*	G1/2	90	100	2,52	0,62	52 151-014
20*	G3/4	97	100	5,70	0,72	52 151-020
25	G1	110	105	8,70	0,88	52 151-025
32	G1 1/4	124	110	14,2	1,2	52 151-032
40	G1 1/2	130	120	19,2	1,4	52 151-040
50	G2	155	120	33,0	2,3	52 151-050

Conexão lisa

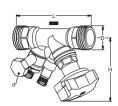
Sem dispositivo de dreno (pode ser instalado com a instalação pressurizada)


DN	D	L	Н	Kvs	Kg	Código Item
10/09	12	141	100	1,47	0,64	52 451-009
15/14	15	154	100	2,52	0,72	52 451-014
20	22	179	100	5,70	0,88	52 451-020
25	28	208	105	8,70	1,1	52 451-025
32	35	233	110	14,2	1,6	52 451-032
40	42	260	120	19,2	1,9	52 451-040
50	54	305	120	33,0	3,1	52 451-050

Kvs = m³/h para uma perda de carga de 1 bar com a válvula totalmente aberta.

^{→ =} Sentido do fluxo

^{*)} Pode-se conectar ao tubo liso mediante um acoplamento de compressão KOMBI.



Com acoplamento de compressão KOMBI (não montada)

Sem dispositivo de dreno (pode ser instalado com a instalação pressurizada)

DN	Da	D	L	Н	Kvs	Kg	Código Item
15/14	G1/2	12 mm x 2 /	90	100	2,52	0,76	52 151-314
		15 mm x 2					
20	G3/4	18 mm x 2 /	97	100	5,70	0,96	52 151-320
		22 mm x 2					

Rosca Macho (STADA)

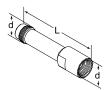
Rosca segundo ISO 228. Comprimento de rosca segundo DIN 3546. Com dispositivo de dreno

DN	D	L	Н	Kvs	Kg	Código Item		
d = G1/2	d = G1/2							
10/09	G1/2	105	100	1,47	0,70	52 152-209		
15/14	G3/4	114	100	2,52	0,73	52 152-214		
20	G1	125	100	5,70	0,88	52 152-220		
25	G1 1/4	142	105	8,70	1,2	52 152-225		
32	G1 1/2	160	110	14,2	1,6	52 152-232		
40	G2	170	120	19,2	2,2	52 152-240		
50	G2 1/2	200	120	33,0	3,3	52 152-250		

Rosca Macho (STADA)

Rosca segundo ISO 228. Comprimento de rosca segundo DIN 3546. Sem dispositivo de dreno (pode ser instalado com a instalação pressurizada)

DN	D	L	Н	Kvs	Kg	Código Item
10/09	G1/2	105	100	1,47	0,61	52 152-009
15/14	G3/4	114	100	2,52	0,66	52 152-014
20	G1	125	100	5,70	0,81	52 152-020
25	G1 1/4	142	105	8,70	1,1	52 152-025
32	G1 1/2	160	110	14,2	1,5	52 152-032
40	G2	170	120	19,2	2,1	52 152-040
50	G2 1/2	200	120	33,0	3,2	52 152-050


Acessórios

Tomada de pressão

Máx. 120°C (intermitente até 150°C)

L	Código Item
44	52 179-014
103	52 179-015

Extensão para o ponto de medição M14x1

Adequada quando utiliza-se isolamento.

d	L	Código Item
M14x1	71	52 179-016

Tomada de pressão

Comprimento 60 mm (não é válida para tomadas 52 179-000/-601)

Pode ser instalada sem drenar o sistema.

L	Código Item
60	52 179-006

Tomada de pressão

Para antiga STADe STAF

Máx. 150°C

L	Código Item
30	52 179-000
90	52 179-601

Acoplamento para soldar o tubo de aço

Com porca

Máx. 120°C

Válvula DN	D	Tubo DN	Código Item
10	G1/2	10	52 009-010
15	G3/4	15	52 009-015
20	G1	20	52 009-020
25	G1 1/4	25	52 009-025
32	G1 1/2	32	52 009-032
40	G2	40	52 009-040
50	G2 1/2	50	52 009-050

Acoplamento para soldar tubo de cobre

Com porca

Máx. 120°C

Válvula DN	D	Tubo Ø	Código Item
10	G1/2	10	52 009-510
10	G1/2	12	52 009-512
15	G3/4	15	52 009-515
15	G3/4	16	52 009-516
20	G1	18	52 009-518
20	G1	22	52 009-522
25	G1 1/4	28	52 009-528
32	G1 1/2	35	52 009-535
40	G2	42	52 009-542
50	G2 1/2	54	52 009-554

Conexão com extremidade lisa

Para conexão com acoplamento de pressão

Com porca Máx. 120°C

Válvula DN	D	Tubo Ø	Código Item
10	G1/2	12	52 009-312
15	G3/4	15	52 009-315
20	G1	18	52 009-318
20	G1	22	52 009-322
25	G1 1/4	28	52 009-328
32	G1 1/2	35	52 009-335
40	G2	42	52 009-342
50	G2 1/2	54	52 009-354

Acoplamento de compressão FPL

Máx. 100°C

Deverá utilizar mangotes de reforço. Para informação adicional sobre FPLs, consultar o catálogo técnico.

Válvula DN	D	Tubo Ø	Código Item
10	G1/2	8	53 319-208
10	G1/2	10	53 319-210
10	G1/2	12	53 319-212
10	G1/2	15	53 319-215
10	G1/2	16	53 319-216
15	G3/4	15	53 319-615
15	G3/4	18	53 319-618
15	G3/4	22	53 319-622
20	G1	28	53 319-928

Acoplamento de compressão KOMBI

Máx. 100°C

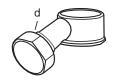
(Ver folheto do catálogo KOMBI.)

Male pipe threads on thrust screw	For pipes, diameter	Article No
G3/8	8	53 235-103
G3/8	10	53 235-104
G3/8	12	53 235-107
G1/2	10	53 235-109
G1/2	12	53 235-111
G1/2	14	53 235-112
G1/2	15	53 235-113
G1/2	16	53 235-114
G3/4	15	53 235-117
G3/4	18	53 235-121
G3/4	22	53 235-123

Completo

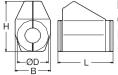
Código Item
52 186-003

Etiqueta de identificação


Uma por válvula

Código Item
52 161-990

Chave allen


[mm]		Código Item
3	Pré ajuste	52 187-103
5	Dreno	52 187-105

Dispositivo de dreno

Pode ser instalado com a instalação pressurizada.

d	Código Item
G1/2	52 179-990
G3/4	52 179-996

Isolamento térmico

Calor/frio Para maiores detalhes veja o catálogo Isolamento térmico.

Para DN	L	Н	D	В	Código Item
10-20	155	135	90	103	52 189-615
25	175	142	94	103	52 189-625
32	195	156	106	103	52 189-632
40	214	169	108	113	52 189-640
50	245	178	108	114	52 189-650

Os produtos, textos, fotografias, gráficos e diagramas contidos nesta publicação poderão ser alterados pela IMI Hydronic Engineering sem aviso prévio oujustificativa. A IMI Hydronic Engineering não assume responsabilidade por danos de qualquer natureza, ocorridos como consequência de ações ou decisões com base nesta publicação. Para obter informações mais atualizadas sobre nossos produtos e suas especificações

5-5-10 PT STAD 10.2015